3-Methylcyclohex-2-enone Derivatives as Initiators of Cyclisation. Part 2.† Monocyclisations to Six-membered Rings

Joseph A. Amupitan, Enamul Huq, Michael Mellor, Edward G. Scovell, and James K. Sutherland * Chemistry Department, The Victoria University of Manchester, Manchester M13 9PL

Cyclisation of 3-methylcyclohex-2-enones and the derived epoxides containing alkene, alkyne, and aryl side-chains yields bicyclo[4.4.0]decane derivatives when the alkene or alkyne is electronically biased towards six-membered ring formation and when the alkene is electronically unbiased.

We have examined the reaction of the epoxide (5) with a number of Lewis acids; varying quantities of cyclisation product (9) and ring-contracted dione (11) are formed. The structure of (11) derives from spectroscopic evidence [$\mathrm{v}_{\text {max }}$. $\left(\mathrm{CHCl}_{3}\right) 1745$ and $1715 \mathrm{~cm}^{-1} ; \tau 4.3(1 \mathrm{H}, \mathrm{m}), 5.1(2 \mathrm{H}, \mathrm{m})$, $8.7(3 \mathrm{H}, \mathrm{s})]$, alkaline hydrolysis to the acid (12) [$\tau 4.2(1 \mathrm{H}$, $\mathrm{m}), 5.0(2 \mathrm{H}, \mathrm{m}), 8.8(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz})]$, and precedent. ${ }^{1}$ Spectroscopic data for (9) [$v_{\max }\left(\mathrm{CCl}_{4}\right) 3495$ and $1715 \mathrm{~cm}^{-1}$; $\tau(300 \mathrm{MHz}) 5.23(1 \mathrm{H}, \mathrm{m}), 5.28(1 \mathrm{H}, \mathrm{m})$, and $9.15(3 \mathrm{H}, \mathrm{s})]$ established the part-structure (3), where C^{*} is either $\mathrm{C}-1,-2$, -3 , or -10 . The structures derived from $\mathrm{C}-1$ and -2 bonding were rejected on mechanistic grounds leaving (9) and the bridged structure from C-3 bonding. The latter could be excluded by showing that the diols from borohydride reduction had a $\mathrm{CH}(\mathrm{OH})$ n.m.r. signal of greater multiplicity than the two singlets required for the isomers of the bridged structure. The cis ring junction in (9) follows from the existence of intramolecular hydrogen bonding. This is possible only in the ' non-steroid' conformation of a cis-decalin as was confirmed by the absence of such bonding in the 5α - and 5β -hydroxycholestan-4-ones kindly donated to us by Dr. J. R. Bull, Pretoria. In the Table the ratio cyclisation : ring contraction for a variety of Lewis acids and solvents is summarised. If it is accepted that gas-phase metal-oxygen bond strengths ${ }^{2}$ give a rough measure of Lewis acidity for oxygen then a trend for the stronger Lewis acids giving more cyclisation product is discernible. In line with this, $\mathrm{TiCl}_{4}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ converted (5) into the ketol (9) (40%) and the diols (13) (23%) without any ring-contracted product. This effect could arise from the $\mathrm{C}^{-} \mathrm{O}^{-}$metal bond in the cyclisation transition state being stabilised to a greater extent than the $\mathrm{C}=\stackrel{+}{\mathrm{O}}-$ metal bond in the ring-contraction transition state. In the latter case the stronger the O -metal bond, the less might be the resonance stabilisation. The enone (1) has been cyclised (using $\mathrm{Ac}_{2} \mathrm{O}-\mathrm{HClO}_{4}-\mathrm{EtOAc}$) to a decalone derivative. ${ }^{3}$ This is a preparatively more useful reaction than the epoxide cyclisation.

The epoxide (6) was treated with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-20{ }^{\circ} \mathrm{C}$ to give a complex reaction mixture from which (10) (20%) [$\tau 4.30(2 \mathrm{H}, \mathrm{m}), 9.00(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 9.15(3 \mathrm{H}, \mathrm{s})]$ and (14) $(40 \%$) [$\tau 4.63(1 \mathrm{H}, \mathrm{m}), 8.35 \mathrm{br}(3 \mathrm{H}, \mathrm{s})$, and 9.10 ($3 \mathrm{H}, \mathrm{s}$)] were isolated. The ketone (14) was reduced with NaBH_{4} to a mixture of diols which on periodate oxidation gave a ketoaldehyde whose spectroscopic properties [$v_{\text {max. }}$ 1730 and $1715 \mathrm{~cm}^{-1}$; $\tau 0.31(1 \mathrm{H}, \mathrm{t}, J 1.5 \mathrm{~Hz}), 4.30(1 \mathrm{H}, \mathrm{m})$, $8.30(3 \mathrm{H}, \mathrm{t}, J 1.6 \mathrm{~Hz})$, and $8.83(3 \mathrm{H}, \mathrm{s})$] established that the double bond was not allylic to the hydroxy-group in (14). \ddagger The two ketols (14) and (10) were again the major products
\dagger Part 1, preceding paper.
\ddagger It was necessary to carry out this degradation to establish that an unexpected rearrangement observed in another cyclisation had not occurred here.

(1)
(2)
(4)
$\left[\mathrm{CH}_{2}\right]_{2} \mathrm{CH}=\mathrm{CH}_{2}$
$\left[\mathrm{CH}_{2}\right]_{2} \mathrm{CH} \stackrel{t}{=} \mathrm{CHMe}$
$\left[\mathrm{CH}_{2}\right]_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-\mathrm{m}$
$\left[\mathrm{CH}_{2}\right]_{2} \mathrm{C} \equiv \mathrm{CH}$

(5)
(6)
(7)
(8)

(3)

(9) $\mathrm{R}=\mathrm{H}$
(10) $R=M e$
$\mathrm{HO}_{2} \mathrm{C}\left[\mathrm{CH}_{2}\right]_{3} \mathrm{CHMeCO}\left[\mathrm{CH}_{2}\right]_{2} \mathrm{CH}=\mathrm{CH}_{2}$
(12)

(14)

(15)

(11)

(13)

(16)
using $\mathrm{TiCl}_{4}, \mathrm{BCl}_{3}$, and SnCl_{4} as Lewis acids; the ratios of (14): (10) were $3.4,3.8$, and 5.3 respectively. The experiment using BCl_{3} was carried out at $-20^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. When the reaction was conducted at $-78{ }^{\circ} \mathrm{C}$ small amounts of the previously mentioned compounds were formed, but a new major (84%) product appeared. It is formulated as (15) but only on mechanistic and spectroscopic grounds [$v_{\text {max. }} 3600$ cm^{-1}; mass spec. 1 H exchangeable with ${ }^{2} \mathrm{H}_{2} \mathrm{O} ; \tau 8.79(3 \mathrm{H}$, s) and $9.10(3 \mathrm{H}, \mathrm{s})$]. Cyclisation of the enone (2) with ($\mathrm{CF}_{3}-$ $\mathrm{CO})_{2} \mathrm{O}-\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (which presumably occurs via the dienol trifluoroacetate) gave, after hydrolysis, the ketone (16) $(23 \%)\left[\lambda_{\text {max. }}(\mathrm{MeOH}) 245 \mathrm{~nm}(\varepsilon 12600) ; v_{\text {max. }} 1670\right.$ and 1610 $\left.\mathrm{cm}^{-1} ; \tau 8.91(6 \mathrm{H}, \mathrm{s})\right]$, the ketol (17) (26%) $\left[v_{\text {max. }} 3600\right.$ and $1710 \mathrm{~cm}^{-1} ; \tau 6.65\left(1 \mathrm{H}, \mathrm{m}, W_{5} 27 \mathrm{~Hz}\right), 9.00(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz})$, and $9.35(3 \mathrm{H}, \mathrm{s})]$ and the cis-isomer (18) (15%) [$v_{\text {max. }} 3600$ and $1710 \mathrm{~cm}^{-1} ; \tau 6.55\left(1 \mathrm{H}, \mathrm{m}, W_{i} 25 \mathrm{~Hz}\right), 9.01(3 \mathrm{H}, \mathrm{s})$,

	Table	
Lewis acid	Ratio	
TiCl_{4}	Solvent	Ra) : (11) AlCl_{3}
FeCl_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	∞
SnCl_{4}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	3.0
ZnCl_{2}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	1.1
$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.6
$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.3
$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.8
ZnCl_{2}	$\mathrm{C}_{6} \mathrm{H}_{6}$	0.6
a Ratios determined by g.l.c.	$\mathrm{Et}_{2} \mathrm{O}$	0.1
	$\mathrm{Et}_{2} \mathrm{O}$	0.1

and $9.12(3 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz})]$. The ring-junction stereochemistry of (17) and (18) is assigned using the chemical shifts of the angular methyl groups ${ }^{4}$ while the $W_{ \pm}$of the $\mathrm{CH}(\mathrm{O})$ protons are in accord with the secondary methyl and the hydroxygroups being equatorial. In the formation of (15) and (16) the initially formed secondary carbonium ion is transformed to a tertiary carbonium ion either by \mathbf{H}^{+}elimination $-\mathrm{H}^{+}$ addition or by 1,2 -hydride migration. In the formation of (16) the latter route was established by carrying out the cyclisation with $\mathrm{CF}_{3} \mathrm{CO}_{2}{ }^{2} \mathrm{H}$; one deuterium ($\nu_{\text {max. }}{ }^{2170} \mathrm{~cm}^{-1}$) was incorporated. On treatment with $\mathrm{NaOH}-\mathrm{H}_{2} \mathrm{O}$-dioxan this deuterium was exchanged.

These results illustrate the difficulties of obtaining preparatively useful yields of cyclisation products when different termination mechanisms are evenly balanced. In the epoxide cyclisations control of the direction of elimination might be achieved using Fleming's device ${ }^{5}$ of $\mathrm{R}_{3} \mathrm{Si}$ elimination instead of H . This might also be applicable in the enone cyclisations and divert termination from the competing rearrangement and nucleophilic attack. Two participating groups which terminate cyclisation by a single mechanism are the acetylenic and aryl functions. Reaction of (7) with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ or SnCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave (19) (45%) [$\tau 2.95(1 \mathrm{H}, \mathrm{m}), 3.30(2 \mathrm{H}, \mathrm{m}), 8.63(3 \mathrm{H}, \mathrm{s})]$ and (20) (45\%) [$\tau 2.90(2 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 3.30(2 \mathrm{H}, \mathrm{m})$, and 8.75 ($3 \mathrm{H}, \mathrm{s}$)].

A mixture of (19) and (20) was reduced to diols with NaBH_{4} and oxidised with periodate to give the ketoaldehydes derived from (19) [$\lambda_{\text {max. }}(\mathrm{EtOH}) 274 \mathrm{~nm}(\varepsilon 1410) ; \nu_{\text {max. }} 1725$ and $1710 \mathrm{~cm}^{-1} ; \tau 0.49(1 \mathrm{H}, \mathrm{t}, J 1.6 \mathrm{~Hz}), 2.93(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and $7.5 \mathrm{~Hz}), 3.35(2 \mathrm{H}, \mathrm{m}), 6.17(3 \mathrm{H}, \mathrm{s})$, and $8.54(3 \mathrm{H}, \mathrm{s})]$ and (20) $\left[\lambda_{\max :}(\mathrm{EtOH}) 279 \mathrm{~nm}(\varepsilon 1440)\right.$; $v_{\text {max. }} 1730$ and 1710 cm^{-1}; $\tau 0.44(1 \mathrm{H}, \mathrm{t}, J 1.5 \mathrm{~Hz}), 2.89(1 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}), 3.29$ $(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and 2.5 Hz), $3.43(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}), 6.26(3 \mathrm{H}$, s). and $8.68(3 \mathrm{H}, \mathrm{s})$].

When TiCl_{4} was used (19) and (20) were formed but the major product was formulated as the dihydrophenanthrene (21) $\left(50 \%\right.$) $\left[\lambda_{\text {max. }}(\mathrm{EtOH}) 278 \mathrm{~nm}(\varepsilon 29800) ; \tau 2.40(2 \mathrm{H}, \mathrm{dt})\right.$, $2.90(2 \mathrm{H}, \mathrm{m}), 3.20(2 \mathrm{H}, \mathrm{m}), 6.20(3 \mathrm{H}, \mathrm{s}), 7.20 \mathrm{br}(4 \mathrm{H}, \mathrm{s})$, and $7.65(3 \mathrm{H}, \mathrm{s})$]. It is not obvious why TiCl_{4} should divert attack of the aryl ring from co-ordinated epoxide to coordinated carbonyl group.

Cyclisation of the acetylene (8) with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ or TiCl_{4} gave (22) $(90 \%)\left[\lambda_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3480\right.$ and $1715 \mathrm{~cm}^{-1} ; \tau 4.35$ ($1 \mathrm{H}, \mathrm{s}$) and $9.05(3 \mathrm{H}, \mathrm{s})]$. Degradation by borohydride reduction followed by periodate cleavage gave a ketoaldehyde whose properties supported structure (22).

These experiments are in accord with prior results. ${ }^{6}$ Where the alkene double bond is electronically unbiased then 6-endo-Trigonal-cyclisation formation is favoured over 5 -exo-Trig. 6 -endo-Digonal cyclisation is favoured only with a terminal alkyne. ${ }^{7}$ Both o - and p-attack by the anisyl ring is not surpris-

(17) (trans)
(18) (cis)

(21)

(19) $R^{\prime}=H, R^{2}=O M e$
(20) $R^{1}=O M e, R^{2}=H$

(22)
ing but the equivalent rates of attack are and suggest an unselective and reactive cationic intermediate. From a preparative viewpoint only the alkyne cyclisations would appear to be useful.

Experimental

M.p.s were determined on a Kofler block and are uncorrected. I.r. spectra were recorded on a Perkin-Elmer 257 instrument in CHCl_{3} solution. N.m.r. spectra were recorded at 60 and 90 MHz on Perkin-Elmer R12B and R32 instruments using CDCl_{3} as solvent. High-resolution mass spectra were measured on an AEI MS30 instrument on samples judged to be pure by t.l.c. The statement ' worked up in the usual way' implies that the organic extract was washed with saturated brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ or MgSO_{4}, and the solvent evaporated under reduced pressure. G.l.c. was carried out on a Perkin-Elmer F11 using a 6 ft PEGA column.

Reaction of (5) with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$. $-\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(400 \mu \mathrm{l})$ was added to a stirred solution of (5) (120 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ at $-20^{\circ} \mathrm{C}$ under N_{2}. After 30 min water was added and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Work-up in the usual way gave an oil (103 mg) which contained three major components by g.l.c. Chromatography on silica gel (12 g) and elution with light petroleum (b.p. $40-60^{\circ} \mathrm{C}$)-ether (7:3) gave the dione (11) (40 mg) (g.l.c. $R_{\mathrm{t}} 1.8 \mathrm{~min} / 180^{\circ} \mathrm{C}$) (Found: C, 72.9 ; $\mathrm{H}, 8.9 . \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 73.3 ; \mathrm{H}, 8.8 \%$) followed by the ketol (9) (30 mg) (g.l.c. $R_{\mathrm{t}} 4.25 \mathrm{~min} / 180^{\circ} \mathrm{C}$ (Found: C, 73.4 ; $\mathrm{H}, 9.0 . \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 73.3 ; \mathrm{H}, 8.8 \%$). Reduction of (9) with sodium borohydride gave an oily mixture of diols, [$\tau 4.41(2 \mathrm{H}, \mathrm{m})$ and $6.22-6.60(1 \mathrm{H}, \mathrm{m})$] (Found: M^{+}, 182.1311. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $M, 182.1307$).

Reaction of (5) with TiCl_{4} - $-\mathrm{TiCl}_{4}(250 \mu \mathrm{l})$ was added to a stirred solution of (5) (217 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathrm{C}$. Work-up as above gave an oil (196 mg) which was chromatographed on silica gel. Elution with light petroleum (b.p. $40-60^{\circ} \mathrm{C}$)ether ($1: 1$) first gave an oil (52 mg) (mainly starting material) followed by (9) (67 mg). Elution with ether gave the diols (13) (42 mg), m.p. $115-123{ }^{\circ} \mathrm{C}$ (ethyl acetate) (Found: C, $66.6 ; \mathrm{H}, 9.1 . \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{C}, 66.6 ; \mathrm{H}, 9.2 \%$).

Hydrolysis of the Dione (11).-The crude product (100 mg) from reaction of BF_{3} and (5) was dissolved in $\mathrm{EtOH}(15 \mathrm{ml})$ and $2 \mathrm{~m}-\mathrm{NaOH}(15 \mathrm{ml})$ added. After being refluxed for 3 h the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and worked up in the
usual way to give (9). Acidification of the aqueous layer followed by $\mathrm{Et}_{2} \mathrm{O}$ extraction and work-up in the usual way gave the acid (12) (35 mg) as an oil $[\mathrm{m} / \mathrm{z} 198 ; \tau 4.10(1 \mathrm{H}, \mathrm{m})$, $5.00(2 \mathrm{H}, \mathrm{m})$, and $8.80(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz})]$.

Reaction of (6) with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$.- $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.5 \mathrm{ml})$ was added to a stirred solution of (6) (512 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{ml})$ at $-20^{\circ} \mathrm{C}$ under a N_{2} atmosphere. After 2 h no epoxide remained (t.l.c.) and the mixture was diluted with water, extracted with ether, and worked up in the usual way to give an oil (526 mg). G.l.c. showed five main peaks with $R_{t} / 150^{\circ} \mathrm{C}$ $2.23,4.35,4.76,6.35$, and 8.87 min in a ratio $5: 3: 17: 7: 4$. The crude product (512 mg) was dissolved in $\mathrm{EtOH}(20 \mathrm{ml}$) and $2 \mathrm{~m} \mathrm{NaOH}(20 \mathrm{ml})$ added. After 2 h reflux dilution with water, extraction with CHCl_{3}, and work-up in the usual way gave an oil (450 mg). G.l.c. showed that the second peak had disappeared. Chromatography on silica gel and elution with light petroleum (b.p. $\left.40-60^{\circ} \mathrm{C}\right)-\mathrm{Et}_{2} \mathrm{O}(1: 1)$ gave the ketol (14) (202 mg) as an oil $R_{t}\left(150^{\circ} \mathrm{C}\right) 4.76 \mathrm{~min}$ (Found: C, 73.8 ; $\mathrm{H}, 9.2 . \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\mathrm{C}, 74.2 ; \mathrm{H}, 9.3 \%$) and the isomer (10) (105 mg) [$\left.R_{\mathrm{t}}\left(150{ }^{\circ} \mathrm{C}\right) 6.35 \mathrm{~min}\right]$ (Found: C, $74.1 ; \mathrm{H}$, 9.4%).

Degradation of (14).-The ketol (14) (29 mg) in EtOH (1 ml) was reduced with $\mathrm{NaBH}_{4}(40 \mathrm{mg})$. After addition of water the EtOH was evaporated off and the residue extracted with $\mathrm{Et}_{2} \mathrm{O}$ and worked up in the usual way to give a mixture of oily diols (28 mg) (Found: M^{+}, 196.1464. $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$ requires M, 196.1463). The diols (19 mg) were dissolved in THF-water ($3: 1 ; 2 \mathrm{ml}$) and sodium periodate (54 mg) added. After being stirred overnight, the mixture was diluted with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$; work-up in the usual way of the extract gave the ketoaldehyde (18 mg) (Found: $M^{+}:$194.1308. $\mathrm{C}_{12} \mathrm{H}_{18}{ }^{-}$ O_{2} requires $M, 194.1307$).

Reaction of (6) with $\mathrm{BCl}_{3} .-\mathrm{BCl}_{3}$ (>2 equiv.) was added to the epoxide (6) (160 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. After 2 h dilution with water, extraction with $\mathrm{Et}_{2} \mathrm{O}$, and the usual work-up gave an oil which was chromatographed on silica gel. Elution with hexane- $\mathrm{Et}_{2} \mathrm{O}$ (1:1) gave the chloride (15) (142 mg), m.p. $120-122{ }^{\circ} \mathrm{C}$ (light petroleum b.p. $60-80^{\circ} \mathrm{C}$) (Found: $\mathrm{C}, 62.7 ; \mathrm{H}, 7.9 ; \mathrm{Cl}, 15.0 . \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{Cl}$ requires C , $62.5 ; \mathrm{H}, 8.2 ; \mathrm{Cl}, 15.4 \%$).

Cyclisation of (2).—A mixture of $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(8 \mathrm{ml})$ and $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}(4 \mathrm{ml})$ was added to the ketone (2) $(500 \mathrm{mg})$. After 12 h water was added and the mixture evaporated to dryness under reduced pressure. The residue was hydrolysed with $\mathrm{NaHCO}_{3}-\mathrm{MeOH}$. Addition of water, extraction with $\mathrm{Et}_{2} \mathrm{O}$, and the usual work-up procedure gave an oil (431 mg) which was separated by preparative t.l.c. on silica gel using hexane- $\mathrm{Et}_{2} \mathrm{O}(1: 1)$ into three fractions. In order of increasing polarity these were the ketone (16) (116 mg) (Found: M^{+}: 178.1358. $\mathrm{C}_{12} \mathrm{H}_{1} \times \mathrm{O}$ requires $M, 178.1358$), the cis-isomer (18) $(80 \mathrm{mg})(\mathrm{m} / \mathrm{z} \mathrm{196})$, and the trans-isomer (17) (137 mg) (m / z 196).

Cyclisation of (7) with $\mathrm{SnCl}_{4}--\mathrm{SnCl}_{4}(0.8 \mathrm{ml})$ was added to a solution of (7) $(200 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ cooled to $-20^{\circ} \mathrm{C}$ under a N_{2} atmosphere. After 2 h addition of water followed by extraction with $\mathrm{Et}_{2} \mathrm{O}$ and work-up in the usual way gave a gum (205 mg). Chromatography on silica gel using light petroleum (b.p. $\left.40-60^{\circ} \mathrm{C}\right)-\mathrm{Et}_{2} \mathrm{O}(1: 1)$ as eluant gave the ketol (20) (89 mg), m.p. $96-98{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right), v_{\text {max. }} 3480$ and 1710 cm^{-1} (Found: C, 74.1; H, 7.8. $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}$ requires C, 73.8;
$\mathrm{H}, 7.7 \%$) and the isomer (19) (91 mg) m.p. $123-124^{\circ} \mathrm{C}$ $\left(\mathrm{Et}_{2} \mathrm{O}\right) v_{\text {max. }} 3480$ and $1710 \mathrm{~cm}^{-1}$ (Found: C, $73.8 ; \mathrm{H}, 7.8 \%$).

Similar results were obtained using $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$.
Degradation of the Mixture of (19) and (20).-The mixture of ketols (19) and (20) (208 mg) obtained as above was reduced with $\mathrm{NaBH}_{4}(202 \mathrm{mg})$ in $\mathrm{EtOH}(5 \mathrm{ml})$. The usual work-up gave a mixture of diols (202 mg) (Found: M^{+}, 262.1571. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $M, 262.1569$). The diols (131 mg) in THF-water ($3: 1$) (4 ml) were oxidized with sodium periodate (269 mg) to give an oil (125 mg). Chromatography on silica gel [light petroleum (b.p. $40-60^{\circ} \mathrm{C}$)- $\mathrm{Et}_{2} \mathrm{O}$] gave, first, the ketoaldehyde derived from (20) (46 mg) [$\mathrm{v}_{\text {nax. }} 1725$ and $1710 \mathrm{~cm}^{-1} ; \lambda_{\text {max. }} 274 \mathrm{~nm}(\varepsilon 1410) ; \tau 0.49(1 \mathrm{H}, \mathrm{t}, J 1.6$ $\mathrm{Hz}), 2.93(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and 7.5 Hz$), 3.34(2 \mathrm{H}, \mathrm{m})$, and 8.54 ($3 \mathrm{H}, \mathrm{s}$) (Found: M^{+}, 260.1411. $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}$ requires M, 260.1412)], then the ketoaldehyde [ex. (19)] (49 mg) [$v_{\text {max. }}$ 1725 and $1710 \mathrm{~cm}^{-1}$; $\lambda_{\text {max. }} 279 \mathrm{~nm}(\varepsilon 1440)$; $\tau 0.45(1 \mathrm{H}, \mathrm{t}$, $J 1.5 \mathrm{~Hz}), 2.89(1 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}), 3.29(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and 2.5 $\mathrm{Hz}), 3.43\left(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}\right.$), and $8.68(3 \mathrm{H}, \mathrm{s})$ (Found: M^{+}: 260.1414).

Cyclisation of (7) with TiCl_{4}.-The epoxide (7) (236 mg) was cyclised as above but using TiCl_{4}. A viscous gum (241 mg) was obtained which was chromatographed on silica gel [light petroleum (b.p. $40-60{ }^{\circ} \mathrm{C}$) $-\mathrm{Et}_{2} \mathrm{O}, 1: 1$] to give the dihydrophenanthrene (21) (120 mg), m.p. $70-71{ }^{\circ} \mathrm{C}$ (light petroleum b.p. $60-80{ }^{\circ} \mathrm{C}$) (Found: M^{+}224.1196. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}$ requires $M, 224.1201$). Accurate combustion analyses ($>1 \%$) could not be obtained owing to facile oxidation of the compound. The ketols (19) and (20) were also isolated.

Cyclisation of (8).- $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.8 \mathrm{ml})$ was added to a solution of (8) (175 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ at $-20^{\circ} \mathrm{C}$ under a N_{2} atmosphere. After 3 h the reaction was worked up as before to give a brown oil (220 mg) which crystallised with time at ambient temperature. A sample was recrystallised from light petroleum (b.p. $40-60{ }^{\circ} \mathrm{C}$), m.p. $84-85{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 61.8 ; \mathrm{H}, 7.1 ; \mathrm{Cl}, 16.4 . \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{ClO}_{2}$ requires C , $61.5 ; \mathrm{H}, 7.0 ; \mathrm{Cl}, 16.5 \%$).

Similar results were obtained on cyclisation with TiCl_{4}.

Acknowledgements

We thank the University of Ahmadu Bello, Zaria, Nigeria, for leave of absence to J. A., the Bangladesh University of Engineering and Technology for leave of absence to E. H., and the S.E.R.C. for financial support to M. M. and E. G. S.

References

1 H. O. House and R. L. Wasson, J. Am. Chem. Soc., 1957, 79, 1488.

2 L. Brewer and G. M. Rosenblatt, Adv. High Temp. Chem., 1969, 2.

3 J. L. Cooper and K. E. Harding, Tetrahedron Lett., 1977, 3321.
4 L. M. Jackman and S. Sternhell, 'Applications of NMR Spectroscopy in Organic Chemistry,' Pergamon, Oxford and New York, 1969, 2nd edn., p. 243.
5 I. Fleming, A. Pearce, and R. L. Snowden, J. Chem. Soc., Chem. Commun., 1976, 182.
6 For reviews see W. S. Johnson, Bio-org. Chem., 1976, 5, 51 : E. E. van Tamelen, Acc. Chem. Res., 1975, 8, 152; J. K. Sutherland, Chem. Soc. Rev., 1980, 9, 265.
7 J. E. Baldwin, J. Chem. Soc., Chem. Commun., 1976, 734.
Received 27th July 1982; Paper 2/1294

